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Abstract 

Alloy powders with nominal composition Cu60Ti20Zr20 were investigated by in-situ X-ray diffraction at the 
B2 powder diffraction beamline (HASYLAB/DESY, Hamburg, Germany) and by X-ray diffraction experi-
ments during continous heating under uniaxial pressure at the F2.1/MAX80 beamline in HASYLAB. The 
structural phase transitions in the nanocrystalline Cu60Zr20Ti20 were investigated for continuous heating 
at three different pressures, namely 0.6GPa, 1.0GPa and 1.7GPa. The pressure dependence of the phase 
transition temperatures was obtained. 
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Introduction 

Bulk metallic glasses (BMGs) are modern metallic materials which hold great promises for a 
broad variety of technological and industrial applications [1]. During the past few decades, bulk 
glass-forming compositions were reported for Pd- [3,4], La- [5], Fe- [6], Ni- [7], Ti- [8], Zr- 
[2,9], Co- [10], Mg- [11] and Al-based [12] multicomponent alloys. The primary interest in 
BMG materials stems from their outstanding mechanical properties like high strength, high 
resistance to fatigue, large elastic deformation, low wear but also soft magnetic properties or 
high corrosion resistance [12-15].  

Copper-based BMGs were recently discovered in the Cu-Zr-Ti alloy system [16], with excellent 
mechanical properties: Young modulus 114-134 GPa, yield strength close to 2 GPa, fracture 
strength (in compression) 2150-2160 MPa, and elastic deformation of up to 2%. The 
combination of low cost, excellent mechanical behaviour and good glass-forming ability (GFA) 
makes the Cu-Zr-Ti BMGs suitable for advanced engineering applications. The alloy compo-
sition range favourable for the synthesis of Cu-Zr-Ti BMGs was initially identified at Cu-rich 
compositions between Cu60Zr30Ti10 and Cu60Zr20Ti20 [16]. Further attempts to refine the BMG 
alloy composition using the e/a variant line criterion [17] were recently reported [18]. The e/a 
criterion specifies a straight composition line in the Cu-Zr-Ti ternary phase diagram linking a 
specific binary alloy (Cu-Zr) composition with high GFA (either near a deep eutectic point or at 
a binary cluster position) to a third alloying element (here Ti). The suggested optimal alloy 
composition for glass-formation is Cu64Zr28.5Ti7.5 (at.%), situated on the (Cu9Zr4)1-xTix variant 
line. It is interesting to notice that the Cu9Zr4 composition corresponds to an icosahedral cluster 
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structure and is not associated with any eutectic composition of the Cu-Zr binary alloy [18]. A 
new composition range suitable for bulk glass formation was recently reported to exist around 
Cu52Zr40Ti8 [19], which correlates with the presence of Cu10Zr7-like nanoclusters. It is well 
known that the mechanical properties of BMGs and of composites derived thereof depend 
strongly on their microstructural features. The formation of nanocrystalline phases upon heating 
and their stability under various pressure-temperature conditions is of fundamental importance 
for understanding the mechanisms leading to a superior glass-formation ability, but also for 
defining the operational limits of BMGs as engineering materials. In this study we examine the 
high-pressure high-temperature stability of nanocrystalline phases in a Cu60Zr20Ti20 alloy using 
in situ snychrotron radiation powder diffraction. 

Experimental 

Bulk metallic glasses are usually prepared by slow copper-mould casting at cooling rates 
between 1-100 K/s [1]. However, other synthesis methods like ball-milling have often been 
employed, e.g. for multicomponent Cu-Zr-Ti alloys [20-24].  High-purity elemental powders of 
copper (99.9%, 200 mesh), zirconium (98%, 100 mesh) and titanium (99.9%, 100 mesh) were 
mixed to get the desired nominal composition Cu60Zr20Ti20 (at.%). Mechanical alloying was 
carried out on a high energy ball-mill using a planetary ball-mill Retsch PM-400. The powders 
mixtures were placed into chromium-steel vials together with 10mm and 20mm diameter 
chromium-steel balls and ball-milled for 50 hours at 250 rotations per minute (rpm). The ball-
to-powder mass ratio was equal to 139/10. Hexane was added to prevent oxidation events. No 
other additives were employed in the present wet-milling experiments. 

For the high-temperature X-ray diffraction experiments, the powder samples were filled into a 
quartz capillary (0.3 mm) mounted on a rotating sample holder. The heating was performed by a 
STOE furnace under Ar atmosphere. The high-resolution diffraction patterns were collected 
using an OBI image-plate detector which allows for fast data acquisition [25]. The pressure–
temperature evolution the Cu60Zr20Ti20 ball-milled powders was determined by in situ synchro-
tron radiation X-ray diffraction. The experiments were performed in energy dispersive mode at 
the MAX80 beamline at HASYLAB/DESY (Hamburg, Germany). Pressure and temperature 
were applied by a multi-anvil press and an electrical-current heating system. The alloy powders 
were mounted into a boron/epoxy resin container, with graphite and copper ensuring electrical 
conduction for sample heating [26]. The sample is further embodied in boron nitride powder for 
chemical inertness. Sodium chloride was used as a standard for pressure calibration. The tempe-
rature was monitored using a thermocouple embedded in the central boron nitride layer.  

Results and Discussion 

In spite of the long-term high-energy milling conditions (50 hours at 250 rpm), the Cu-Zr-Ti 
alloy powders could not be rendered amorphous. The X-ray powder diffraction pattern taken at 
room temperature on the as-milled specimens is shown in Fig. 1. The as-prepared alloy powders 
consist most probably of a mixture of tetragonal Cu3Ti2 (space group 129, P4/nmm, PDF 18-
0459) and face-centered-cubic Cu5Zr (space group 216, F-43m, PDF 40-1322) nanocrystals. 
Some other phases appear to have marginally formed during high-energy mechanical alloying, 
as suggested by a few small yet unidentified Bragg peaks. Several authors have previously 
dealed with the crystallization of amorphous Cu-Zr-Ti alloys [27-30] and with the ternary alloy 
phase diagram [18, 19, 31]. Most of these studies however started with an initial amorphous 
alloy, so the results cannot be directly compared with the present investigation. We first observe 
that the Cu5Zr composition lies near to the hexagonal Cu51Zr14 (space group 175, P6/m, PDF 42-
1185), often reported as the primary crystallization phase for the Cu60Zr20Ti20 alloy [30,31]. The 
Cu5Zr and Cu51Zr14 phases coexist well in intermetallic layers formed by interdiffusion during 
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The reaction temperature TR decreases with increasing applied pressure, signalling the eventual 
lowering of the energy barriers for the γ-phase formation under pressure application. Further 
experimental research efforts are planned for clarifying this effect in more detail. 
 

Fig. 3. Energy-dispersive X-ray diffraction patterns collected under pressure at 0.6 GPa (left),          
1 GPa (middle) and 1.7 GPa (right) for temperatures up to 1150°C. 
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Cristalizarea sticlelor metalice Cu-Zr-Ti asistată de presiune 

Rezumat 

Aliajele sub formă de pulbere având compoziţia Cu60Ti20Zr20 au fost investiagate folosind radiaţie de 
sincrotron la liniile B2-difractie de pulberi (HASYLAB/DESY) şi F2.1/MAX80- încălzire continuă în 
prezenţa presiunii aplicată uniaxial. Tranziţiile de fază pentru aliajul nanocristalin Cu60Ti20Zr20 au fost 
investigate în condiţii de încălzire continuă la diferite presiuni şi anume: 0.6 GPa, 1.0 GPa, 1.7 GPa. Au 
fost obtinuţe dependenţele tranziţiilor de fază de temperatură şi presiune. 

 


